

UNIVERSIDAD AUTÓNOMA DE ZACATECAS

"Francisco García Salinas"

ÁREA DE INGENIERÍAS Y TECNOLOGICAS

UNIDAD ACADÉMICA DE INGENIERÍA I

PROGRAMA DE INGENIERÍA EN MANUFACTURA

Análisis numérico

Unidad Didáctica

SEMESTRE	TERCERO	EJE FORMATIVO	CIENCIAS BÁSICAS
HORAS TOTALES	80 horas	ACADEMIA	
CRÉDITOS	5		
ANTECEDENTE	Ecuaciones diferenciales	FECHA DE	ENERO 2017
		ELABORACIÓN	
CONSECUENTE		PRÓXIMA REVISIÓN	JUNIO 2022

Programa de la asignatura NOMBRE DE LA UNIDAD DIDÁCTICA con las competencias genéricas y disciplinares para el aprendizaje.

COMPETEN	ICIAS GENÉRICAS
El alumno podrá utilizar métodos numéricos ingeniería.	para realizar cálculos y resolver problemas de

COMPETENCIAS DISIPLINARES DEL EJE FORMATIVO DE CIENCIAS BÁSICAS			UNIDAD DE APRENDIZAJE				
	Ι	II	III	IV	V	VI	
Comprender y emplear los elementos básicos para encontrar errores típicos en los cálculos y proponer soluciones a problemas de ingeniería.	X						
Identificar y aplicar los algoritmos y los elementos de una situación problemática, plantear y resolver ecuaciones algebraicas.	•	X					
El alumno podrá resolver problemáticas planteadas teniendo en cuenta más de dos variables			X				
El alumno aplicará los métodos de interpolación y propondrá soluciones de problemas o podrá explicar comportamientos de fenómenos plantados.				X			

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje: INTRODUCCIÓN		Tiempo Requerido
I	1.1	Definiciones básicas	20
	1.2	Error absoluto y relativo	
	1.3	Método iterativo	
	1.4	Algoritmos y convergencia	
	1.5	Series de taylor	
	1.6	Polinomios de Taylor	
		·	

Desempeño de estudiante al concluir la unidad

Conocer y comprender la terminología empleada en el análisis numérico

Objetivos de aprendizaje

Conocer la importancia de los métodos numéricos en ingeniería; comprender los elementos básicos de los métodos numéricos y su aplicación en el planteamiento y solución de problemas de ingeniería.

Actividad de enseñanza

Competencias a desarrollar

Comprender y emplear los elementos básicos para encontrar errores típicos en los cálculos y proponer soluciones a problemas de ingeniería.

Actividad de aprendizaje

Instrumento de evaluación

Mostrar las definiciones básicas y realizar ejercicios prácticos para aplicar los conceptos. Comprender los conceptos y empleará elementos para identificar errores en cálculos de ingeniería Examen Lista de cotejo

Rol del docente

Organiza los grupos.

Coordina y explica cómo trabajar en equipo.

Diseña actividades.

Fomenta el gusto a la lectura

Material didáctico

Lecturas

Apuntes y presentaciones Ejemplos

Material bibliográfico de consulta

J.A. Gutierrez Robles, M. A. olmos Gómez, Análisis Numerico, Mc Graw Hill

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje: Solución de ecuaciones no lineales		Tiempo Requerido
II	2.1	Método de bisección	20
	2.2	Método de la falsa posición o regla falsa	
	2.3	Método de la secante	
	2.4	Método del punto fijo	
	2.5	Método de Newton-Raphson	
	2.6	Aproximaciones iniciales de los cruces por cero	
	2.7	Punto fijo multivariable	
	2.8	Comparación de métodos	

Desempeño de estudiante al concluir la unidad

Conocer, comprender y aplicar los diferentes métodos de solución de ecuaciones no lineales para problemas en Ingeniería.

Objetivos de aprendizaje

Entender diferentes métodos de solución de ecuaciones lineales y aplicarlos en la solución de problemas que involucren fenómenos físicos, químicos, etc.

Competencias a desarrollar

Identificar y aplicar los algoritmos y los elementos de una situación problemática, plantear y resolver ecuaciones algebraicas.

Elegir el método de solución de ecuaciones no lineales más adecuado de acuerdo a sus características para dar solución a un problema dado.

Actividad de enseñanza

Mostrar los diferentes métodos de análisis numérico. Resolver y exponer las estrategias para la resolución de problemas

Actividad de aprendizaje

Aplicar los métodos de resolución en una situación problemática. Elegir el método más adecuado de acuerdo a la situación del problema.

Instrumento de evaluación

Examen
Tareas, prácticas
Reportes prácticos

Rol del docente

Organiza los grupos.

Coordina y explica cómo trabajar en equipo.

Diseña actividades.

Fomenta el gusto a la lectura

Material didáctico

Lecturas

Apuntes y presentaciones

Ejemplos

Material bibliográfico de consulta

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje: Solución de ecuaciones polinomiales		Tiempo Requerido
III	3.1	Aritmética para polinomios	20
	3.2	Aproximaciones iniciales	
	3.3	Solución completa de polinomio	
		a. Procedimiento de deflación	
		b. Método de Bairstow	
		C. Método de Laguerre	
		d. Método de Bernoulli	
		e. Método de Newton	
	3.4	Método de Jenkins-traub	
	3.5	Programas dearrollados en Matlab	
Desempeño de	estudiante :	al concluir la unidad	

Objetivos de aprendizaje	Competencias a desarrollar	
Resolver problemas de ingeniería mediante el planteamiento y solución de sistemas de ecuaciones.	El alumno podrá resolver problen cuenta más de dos variables	náticas planteadas teniendo en
Actividad de enseñanza	Actividad de aprendizaje	Instrumento de evaluación
Mostrar los diferentes métodos	Aplicar los métodos de resolución en	Examen
de análisis numérico.	una situación problemática.	Tareas, prácticas
Resolver y exponer las	Elegir el método más adecuado de	Reportes prácticos
estrategias para la resolución de	acuerdo a la situación del problema.	
problemas		

Rol del docente

Organiza los grupos.

Coordina y explica cómo trabajar en equipo.

Diseña actividades.

Fomenta el gusto a la lectura

Unidad de	Nombre de la Unidad de Aprendizaje:	Tiempo
Aprendizaje	Interpolación y ajuste de curvas	Requerido
IV	4.1 Interpolación	20
	4.1.1 Interpolación de Lagrange	
	4.1.2 Interpolación iterativa	
	4.1.3 Elección de los puntos de interpolación	
	4.2 Ajuste por el método de mínimos cuadrados	
	4.3 Transformadas de Fourier y de	
	4.4 Laplace	

4.5	Errores	por	truncamiento
-----	---------	-----	--------------

4.6 Errores por discretización

Desempeño de estudiante al concluir la unidad

El alumno podrá aplicar métodos analíticos para predecir y encontrar resultados de la problemática planteada.

Objetivos de aprendizaje

Aplicar los diferentes métodos de interpolación para la construcción de funciones de qu permitan explicar los fenomemnos de una investigación.

Actividad de enseñanza

Mostrar los diferentes métodos de interpolación Resolver problemas y obtener funciones para predecir algunos fenómenos.

Competencias a desarrollar

El alumno aplicará los métodos de interpolación y propondrá soluciones de problemas o podrá explicar comportamientos de fenómenos plantados.

Actividad de aprendizaje

Aplicar los métodos de resolución en una situación problemática. Elegir el método más adecuado de acuerdo a la situación del problema.

Instrumento de evaluación

Examen
Tareas, prácticas
Reportes prácticos

Rol del docente

Organiza los grupos.

Coordina y explica cómo trabajar en equipo.

Diseña actividades.

Fomenta el gusto a la lectura

Material didáctico

Lecturas

Apuntes y presentaciones Ejemplos

Material bibliográfico de consulta

Políticas del curso

No se permite la entrada con alimentos ni bebidas

No tiene participación si no trae el material requerido

Tiene que elaborar un portafolio de evidencias que irá enriqueciendo durante el curso.

Perfil docente

Calificación ordinaria

Se pondera cada unidad de aprendizaje por separado, la calificación ordinaria consta del promedio de las ponderaciones. Si el alumno tiene promedio de 8 obtiene su calificación ordinaria, de lo contrario requiere hacer una evaluación final y presentar su portafolio de evidencias completo el día y hora programada para la aplicación de este.

De las asistencias

El alumno deberá tener al menos el 80 %

En la realización de esta Unidad Didáctica participaron				
Elaborada por	Dr. Miguel Montoya Dávila			
En la revisión de este programa participaron				
Coordinador de la	la Academia de:			