

UNIVERSIDAD AUTÓNOMA DE ZACATECAS

"Francisco García Salinas"

ÁREA DE INGENIERÍAS Y TECNOLOGICAS

UNIDAD ACADÉMICA DE INGENIERÍA I

PROGRAMA DE INGENIERÍA EN MANUFACTURA

MECANICA DE MATERIALES

Unidad Didáctica

SEMESTRE	CUARTO	EJE FORMATIVO	DISEÑO EN
			INGENIERÍA
HORAS TOTALES	80 horas	ACADEMIA	MATERIALES
CRÉDITOS	5		
ANTECEDENTE	MATERIALES DE	FECHA DE	JUNIO 2017
	INGENIERÍA	ELABORACIÓN	
CONSECUENTE		PRÓXIMA REVISIÓN	JUNIO 2022

Programa de la asignatura MECÁNICA DE MATERIALES con las competencias genéricas y disciplinares para el aprendizaje.

COMPETENCIAS GENÉRICAS

COMPETENCIAS DISCIPLINARES DEL EJE FORMATIVO DE		UNIDAD DE				
CIENCIAS BÁSICAS		APRENDIZAJE				
	Ι	II	III	IV	V	VI
20Conoce y utiliza las propiedades obtenidas a partir de un ensayo de tensión	X					
15Maneja los conceptos de esfuerzo, deformación y comportamiento elástico		X				
10Realiza cálculos y resuelve problemas de torsión			X			
15Vigas y columnas				X		
10Elementos de teoría de plasticidad					X	
10Conformado de materiales						

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje: ENSAYO DE TENSIÓN	Tiempo Requerido
I	1 Definiciones y conceptos fundamentales	20 horas
	2 Esfuerzo-deformación ingenieril	
	3 Esfuerzo-deformación verdaderos	
	4 Ejercicios	_

Conoce y usa los diagramas esfuerzo deformación ingenieril y verdaderos, emplea y sabe aplicar las propiedades intrínsecas obtenidas en un ensayo de tensión uniaxial

Objetivos de aprendizaje	Competencias a desarrollar		
Entender los diagramas obtenidos de un ensayo de tensión y su relación con las	Conoce las características de diferentes tipos de cuerva esfuerzo- deformación. Sabe clasificar los materiales de acuerdo a su comportamiento		
propiedades mecánicas de los materiales	mecánico. Entiende el uso de las propiedades intrínsecas mecánicas de los materiales		
Actividad de enseñanza	Actividad de aprendizaje	Instrumento de evaluación	
Proporcionar las definiciones fundamentales y exponer mediante diapositivas sistemáticamente los términos	En grupo realizar buscar un componente o pieza cuya aplicación sea o haya sido de conformado mecánico.	Portafolio de evidencias que contenga los resultados de la práctica realizada	
básicos del tema. Hacer dinámicas grupales para que hagan ejercicios con	En grupo realizar ensayos de tensión y obtener los	Elaboración de reporte práctico de investigación.	
diferentes diagramas y calculen los valores de coeficiente de endurecimiento por deformación.	parámetros importantes como UTS, YS n y k	Lista de cotejo	

Rol del docente

Organiza los grupos.

Coordina y explica cómo trabajar en equipo.

Diseña actividades.

Fomenta el gusto a la lectura

Material didáctico

Antología

Artículos de investigación

Ejemplos prácticos

Material bibliográfico de consulta

Ciencia e Ingeniería de los Materiales, Donald R. Askeland, Editorial International Thomson Editores

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje DEFINICIÓN DE ESFUERZO Y COMPORTAMIENTO ELÁSTICO	Tiempo Requerido
2	1. Definición de esfuerzo normal y esfuerzo cortante	15
2. Estado de esfuerzo en dos y tres dimensiones y circulo de Mohr		
	3. Teoría de elasticidad	

Conoce el concepto de esfuerzo normal y esfuerzo cortante Realiza cálculos y aplica el análisis a estructuras sencillas Entiende la relación entre esfuerzo y deformación elástica y maneja los conceptos básicos Maneja el concepto de esfuerzo plano, y deformación plana.

Objetivos de aprendizaje	Competencias a desarrollar		
Entender las definiciones	Entiende y utiliza las definiciones de los tipos de esfuerzo y realiza		
básicas de esfuerzo	cálculos sencillos en estructuras		
deformación bajo un	Entiende la importancia de rigidez a través del módulo de Young		
comportamiento elástico.	Realiza cálculos sencillos donde aplica la linealidad de la curva		
	esfuerzo-deformación		
Actividad de enseñanza	Actividad de aprendizaje	Instrumento de evaluación	
Promover el entendimiento	En grupo realizan la búsqueda	Reporte de la práctica realizada	
fundamental de los términos	de estructuras sencillas.	Entrega del componente evaluado	
básicos del tema.	Realizan caculos y visualizan	con su respectivo reporte.	
Hacer dinámicas grupales para	el uso de las propiedades	Examen de conocimientos	

Lista de cotejo

elásticas de un material.

Rol del docente

circulo de Mohr

que hagan ejercicios con el

Organiza los grupos para la realización de las prácticas Coordina y explica cómo trabajar en equipo. Diseña actividades. Fomenta el la lectura de artículos de investigación

Material didáctico

Antología

Artículos de investigación

Ejemplos prácticos

Material bibliográfico de consulta

Mecánica de Materiales, F.P. Beer, E.R. Johnston, J.T. DeWolf, Mc-Graw Hill Mechanical Metallurgy, George E. Dieter, Mc-Graw Hill

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje Torsión	Tiempo Requerido
3	Análisis preliminar de esfuerzos y deformaciones en un eje Diseño de ejes de transmisión	10
	3. Torsión de elementos no circulares	

Conoce la distribución de esfuerzos y deformaciones en un eje Tiene capacidad para el diseño o la selección de ejes Entiende el concepto de torsión aún para elementos no circulares

Objetivos de aprendizaje

Conocer los conceptos básicos para el diseño, construcción y aplicación de elementos de ejes de trasmisión de potencia.

Competencias a desarrollar

Entiende la distribución de esfuerzos y deformaciones en ejes circulares Diseña y construye elementos de rotación circular para trasmisión de

potencia

Aplica el concepto de torsión para elementos no circulares.

Actividad de enseñanza Proporciona los términos

básicos y de las definiciones del tópico de torsión. Proporciona los elementos necesarios para que el estudiante diseñe y construya ejes de transmisión de potencia.

Actividad de aprendizaje

Individualmente el estudiante debe buscar una aplicación de un eje de transmisión de potencia.

El estudiante debe de hacer un análisis mediante cálculos del porque el eje tiene las características necesarias para usarlo como elemento de transmisión de potencia.

Instrumento de evaluación

Documento de análisis Entrega de un reporte donde evidencia el análisis realizado al componente de transmisión de potencia Lista de cotejo

Rol del docente

Organiza los grupos de discusión

Coordina los equipos para la búsqueda documental.

Apoya en las actividades individuales.

Fomenta el la lectura de artículos de divulgación

Material didáctico

Antología

Artículos de divulgación

Ejemplos prácticos

Material bibliográfico de consulta

Mecánica de Materiales, F.P. Beer, E.R. Johnston, J.T. DeWolf, Mc-Graw Hill

Unidad de	Nombre de la Unidad de Aprendizaje	Tiempo
Aprendizaje	VIGAS Y COLUMNAS	Requerido
4	 Teoría de cálculo para vigas Teoría de caculo para columnas Diseño de componente 	15

Conoce el concepto de carga, diagrama cortante y momento flexor Diseña vigas prismáticas a la flexión y entiende la teoría de la deflexión Conoce el concepto de estabilidad de estructuras y maneja la fórmula de Euler

Objetivos de aprendizaje

Conocer y aplicar los diferentes tipos de materiales (cerámicos, polímeros, y compuestos). Entiende el procesamiento y la aplicación de los mismos

Competencias a desarrollar

Conoce la diferencia entre los materiales de estudio Comprende y evalúa las propiedades de los diferentes tipos de materiales Realiza el procesamiento de materiales compuestos mediante metalurgia de polvos

Actividad de enseñanza

Proporciona los términos y fundamentos de los grupos de materiales de estudio.
Hacer dinámica grupal para que se diseñe y planee la fabricación de un material compuesto.

Actividad de aprendizaje

En grupo y en base a la planeación realizada conseguir los insumos para la fabricación del material compuesto.
Realizar la fabricación y analizar una propiedad importante del material compuesto fabricado.

Instrumento de evaluación

Entrega de un reporte dela práctica realizada.
Entrega de una pieza fabricada con

Entrega de una pieza fabricada con material compuesto. Lista de cotejo

Rol del docente

Organiza los grupos de discusión

Coordina los equipos para la búsqueda documental.

Apoya en las actividades individuales.

Fomenta el la lectura de artículos de referencia

Material didáctico

Libros

Artículos de referencia

Ejemplos prácticos

Material bibliográfico de consulta

Introducción a la Ciencia e Ingeniería de los Materiales, William D. Callister, Editorial Reverté

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje CORROSIÓN Y DESGASTE	Tiempo Requerido
5	1. Fundamentos de corrosión	10
	2. Fundamentos de desgaste de materiales	
	a. I diffaultelled de des gabes de lifatellates	

Identifica los principales mecanismo de corrosión de metales

Entiende el principio básico del desgaste por fricción, desgaste por abrasión y desgaste por impactoabrasión

Evalúa y propone soluciones a los problemas de corrosión y desgaste

Objetivos de aprendizaje	Competencias a desarrollar	_		
Conocer y entender los	Identifica los mecanismos de corrosión			
mecanismos de degradación de	e degradación de Identifica los mecanismos de desgaste mecánico			
metales como la corrosión y el	Aplica acciones de prevención, co	orrección y protección de superficie		
desgaste mecánico.	te mecánico. metálicas.			
Actividad de enseñanza	Actividad de aprendizaje	Instrumento de evaluación		
Proporcionar los términos y	En grupo realizar una visita de	Entrega de un reporte de la		
fundamentos de los conceptos	campo para realizar la	práctica realizada.		
de corrosión y desgaste	identificación de problemas de	Entrega de una pieza que tenga un		
mecánico.	corrosión y desgaste.	recubrimiento superficial.		
Organizar grupos de estudio de	Realizar la fabricación de un	Lista de cotejo		
problemas identificables de	recubrimiento superficial que			
corrosión y desgaste.	permita la prevención de la			
	corrosión.			

Rol del docente

Organiza los grupos de discusión

Coordina los equipos para la búsqueda documental.

Apoya en las actividades individuales.

Fomenta el la lectura de artículos de referencia

Material didáctico

Libros

Artículos de referencia

Ejemplos prácticos

Material bibliográfico de consulta

Ciencia e Ingeniería de los Materiales, Donald R. Askeland, Editorial International Thomson Editores

Políticas del curso

No se permite la entrada con alimentos ni bebidas

No tiene participación si no trae el material requerido

Tiene que elaborar un portafolio de evidencias que irá enriqueciendo durante el curso.

Perfil docente

Calificación ordinaria

Se pondera cada unidad de aprendizaje por separado, la calificación ordinaria consta del promedio de las ponderaciones. Si el alumno tiene promedio de 8 obtiene su calificación ordinaria, de lo contrario requiere hacer una evaluación final y presentar su portafolio de evidencias completo el día y hora programada para la aplicación de este.

De las asistencias

Derecho a faltar al 20 % del curso

En la realización de esta Unidad Didáctica participaron

Elaborada por Víctor Hugo Baltazar Hernández

En la revisión de este programa participaron

Alejandro López Ibarra Sergio Haro Rodríguez

Coordinador de la Academia de: Procesos de Manufactura