

UNIVERSIDAD AUTÓNOMA DE ZACATECAS

"Francisco García Salinas"

ÁREA DE INGENIERÍAS Y TECNOLOGICAS

UNIDAD ACADÉMICA DE INGENIERÍA I

PROGRAMA DE INGENIERÍA EN MANUFACTURA

Termodinámica

Unidad Didáctica

SEMESTRE	SEGUNDO	EJE FORMATIVO	CIENCIAS DE LA
			INGENIERÍA
HORAS TOTALES	80 horas	ACADEMIA	CIENCIAS DE LA
			INGENIERÍA
CRÉDITOS	5		
ANTECEDENTE	PRINCIPIOS DE QUÍMICA	FECHA DE	ENERO 2017
		ELABORACIÓN	
CONSECUENTE	MECÁNICA DE FLUIDOS	PRÓXIMA REVISIÓN	JUNIO 2022

Programa de la asignatura TERMODINÁMICA con las competencias genéricas y disciplinares para el aprendizaje.

COMPETENCIAS GENÉRICAS

Analizar, desarrollar y aplicar los conceptos fundamentales en el estudio de los sistemas cerrados y abiertos, así como de las leyes de los gases ideales a los procesos y ciclos termodinámicos

COMPETENCIAS DISIPLINARES DEL EJE FORMATIVO DE CIENCIAS DE LA INGENIERÍA

UNIDAD DE APRENDIZAJE

I II III IV V VI X

Conocer e interpretar problemas de balance de energía, transferencia de energía y propiedades de las sutancias puras.

Unidad de	Nombre de la Unidad de Aprendizaje:	Tiempo
Aprendizaje	INTRODUCCIÓN	Requerido
I	1 Termodinámica y energía 2 Importancia de las dimensiones y unidades 3 Sistemas cerrados y abiertos 4 Propiedades de un sistema 5 Densidad y densidad relativa 6 Estado y equilibrio 7 Procesos y ciclos 8 Temperatura y ley cero de la termodinámica 9 Presión	8 horas

Desempeño de estudiante al concluir la unidad

Conocer la importancia de las dimensiones e unidades que se utilizan en la termodinámica. Entender los ciclos que se presentan en la termodinámica.

Objetivos de aprendizaje

Es que el alumno entienda de manera general, las unidades, propiedades de los sistemas, las densidades relativas y los estados y equilibrios en la termodinámica.

Competencias a desarrollar

Conocerá los conceptos básicos de la termodinámica, unidades y dimensiones aplicados en sistemas cerrados y abiertos.

Actividad de enseñanza

Solicitar que de forma individual investiguen ejemplos relacionados a los sistemas de unidades e investigar la temperatura y la ley cero de la

Actividad de aprendizaje

Investigar de forma individual los tipos de ciclos y los estados de equilibrio.

Instrumento de evaluación

Cuaderno del alumno que contenga ejercicios realizados en clase y los que se dejan para estudiar antes de la evaluación. Prueba escrita en la cual debe termodinámica.

tener al menos el 60% del domino de los conocimientos requeridos.

Rol del docente

Organiza los grupos.

Coordina y explica cómo trabajar en equipo.

Diseña actividades

Fomenta el gusto a la lectura

Material didáctico

Lecturas

Ejemplos prácticos

Material bibliográfico de consulta

Yunus A. Cengel y Michael A. Boles, "Termodiámica", Sexta edición, Editorial McGrawHill. J.M. Smith, H.C. Van Ness, M.M. Abbott, "Introducción a la termodinámica en Ingeniería Química.

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje: ENERGÍA, TRANSFERENCIA DE ENERGÍA Y ANÁLISIS GENERAL DE NERGÍA	Tiempo Requerido 15 horas
II	1 Formas de energía 2 Transferencia de energía por calor 3 Transferencia de energía por trabajo 4 Formas mecánicas de trabajo 5 La primera ley de la termodinámica 6 Eficiencia de la conversión de energía	

Desempeño de estudiante al concluir la unidad

Conocer la importancia de cómo se lleva a cabo la transferencia de energía, ya sea por calor o por trabajo.

Entender los conceptos sobre la primera ley de la termodinámica.

Objetivos de aprendizaje

Es que el alumno entienda de manera general los conceptos sobre la transferencia de energía y la primera ley de la termodinámica.

Competencias a desarrollar

Conocerá los conceptos básicos de la termodinámica, formas mecánicas de trabajo y la eficiencia de la conversión de energía.

Actividad de enseñanza

Solicitar que de forma individual investiguen ejemplos relacionados a la transferencia de energía por calor y por trabajo

Actividad de aprendizaje

Investigar de forma individual ejemplos prácticos sobre la primera ley de la termodinámica.

Instrumento de evaluación

Cuaderno del alumno que contenga ejercicios realizados en clase y los que se dejan para estudiar antes de la evaluación.

Prueba escrita en la cual debe tener al menos el 60% del domino de los conocimientos requeridos

Rol del docente

Organiza los grupos.

Coordina y explica cómo trabajar en equipo.

Diseña actividades

Fomenta el gusto a la lectura

Material didáctico

Lecturas

Ejemplos prácticos

Material bibliográfico de consulta

Yunus A. Cengel y Michael A. Boles, "Termodiámica", Sexta edición, Editorial McGrawHill. J.M. Smith, H.C. Van Ness, M.M. Abbott, "Introducción a la termodinámica en Ingeniería Química.

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje: PROPIEDADES DE LAS SUSTANCIAS PURAS	Tiempo Requerido 15 horas
III	1 Sustanica pura	
	2 Procesos de cambio de fases en sustancias puras	
	3 Diagramas de propiedades para procesos de cambio de gases	
	4 Tabla de propiedades	
	5 Ecuacion de estado de gas ideal	
	6 Factor de compresibilidad, una medida de la desviación del	
	comportamiento de gas ideal	

Desempeño de estudiante al concluir la unidad

Conocer la importancia sobre las propiedades de las sustancias pura. Entender los diagramas de propiedades para procesos de cabio de gases.

Objetivos de aprendizaje	Competencias a desarrollar	
Es que el alumno entienda de manera general, la ecuación de estado de gas ideal y el factor de compresibilidad.	Conocerá los conceptos básicos en sustancias puras.	sobre los procesos de cambio de fases
Actividad de enseñanza	Actividad de aprendizaje	Instrumento de evaluación

Solicitar que de forma
individual investiguen ejemplos
relacionados a los sistemas de
unidades e investigar la
temperatura y la ley cero de la
termodinámica.

Investigar de forma individual el factor de compresibilidad.

Cuaderno del alumno que contenga ejercicios realizados en clase y los que se dejan para estudiar antes de la evaluación.
Prueba escrita en la cual debe tener al menos el 60% del domino de los conocimientos requeridos

Rol del docente

Organiza los grupos.

Coordina y explica cómo trabajar en equipo.

Diseña actividades

Fomenta el gusto a la lectura

Material didáctico

Lecturas

Ejemplos prácticos

Material bibliográfico de consulta

Yunus A. Cengel y Michael A. Boles, "Termodiámica", Sexta edición, Editorial McGrawHill. J.M. Smith, H.C. Van Ness, M.M. Abbott, "Introducción a la termodinámica en Ingeniería Química.

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje: ANÁLISIS DE ENERGÍA DE SISTEMAS CERRADOS	Tiempo Requerido 15 horas
IV	1 Trabajo de frontera móvil 2 Balance de energía para sistemas cerrados 3 Calores específicos 4 Energía interna, entalpía y calores específicos de gases ideales 5 Energía interna, entalpía y calores específicos de sólidos y líquidos	

Desempeño de estudiante al concluir la unidad

Conocer la importancia del análisis de energía de sistemas cerrados y su balance de energía.

Objetivos de aprendizaje

Es que el alumno entienda de manera general, las unidades, propiedades de los sistemas, las densidades relativas y los estados y equilibrios en la termodinámica.

Competencias a desarrollar

Conocerá los conceptos básicos de la termodinámica, unidades y dimensiones aplicados en sistemas cerrados y abiertos.

Actividad de enseñanza

Solicitar que de forma individual investiguen ejemplos relacionados a calores específicos y entalpías de reacción.

Actividad de aprendizaje

Investigar de forma individual al balance de energía interna y entalpías de reacción..

Instrumento de evaluación

Cuaderno del alumno que contenga ejercicios realizados en clase y los que se dejan para estudiar antes de la evaluación.

Prueba escrita en la cual debe tener al menos el 60% del domino de los conocimientos requeridos

Rol del docente

Organiza los grupos.

Coordina y explica cómo trabajar en equipo.

Diseña actividades

Fomenta el gusto a la lectura

Material didáctico

Lecturas

Ejemplos prácticos

Material bibliográfico de consulta

Yunus A. Cengel y Michael A. Boles, "Termodiámica", Sexta edición, Editorial McGrawHill. J.M. Smith, H.C. Van Ness, M.M. Abbott, "Introducción a la termodinámica en Ingeniería Química.

Unidad de Aprendizaje	Nombre de la Unidad de Aprendizaje: ANÁLISIS DE MASA Y ENERGÍA DE VOLÚMENES DE CONTROL	Tiempo Requerido 15 horas
V	1 Conservación de la masa	
	2 Trabajo de flujo y energía de un fluido en movimiento	
	3 Algunos dispositivos de ingeniería de flujo estacionario	
	4 Análisis de procesos de flujo no estacionario	

Desempeño de estudiante al concluir la unidad

Conocer la importancia del análisis de masa y energía de volúmenes de control Entender el proceso de conservación de la masa en flujo estacionario y no estacionario.

Objetivos de aprendizaje	Competencias a desarrollar	
Es que el alumno entienda de manera general, sobre la conservación de la masa y el trabajo de flujo y energía de un fluido en movimiento	Conocerá los conceptos básicos o balance.	de la conservación de la energía y su
Actividad de enseñanza	Actividad de aprendizaje	Instrumento de evaluación
Solicitar que de forma	Investigar de forma individual	Cuaderno del alumno que contenga

Solicitar que de forma individual investiguen ejemplos sobre trabajo de flujo y análisis de procesos estacionarios y no estacionarios.

Investigar de forma individual los tipos de procesos de flujo existen.

Cuaderno del alumno que contenga ejercicios realizados en clase y los que se dejan para estudiar antes de la evaluación. Prueba escrita en la cual debe tener al menos el 60% del domino

Rol del docente

Organiza los grupos.

Coordina y explica cómo trabajar en equipo.

Diseña actividades

Fomenta el gusto a la lectura

Material didáctico

Lecturas

Ejemplos prácticos

Material bibliográfico de consulta

Yunus A. Cengel y Michael A. Boles, "Termodiámica", Sexta edición, Editorial McGrawHill. J.M. Smith, H.C. Van Ness, M.M. Abbott, "Introducción a la termodinámica en Ingeniería Química.

Políticas del curso

No se permite la entrada con alimentos ni bebidas

No tiene participación si no trae el material requerido

Tiene que elaborar un portafolio de evidencias que irá enriqueciendo durante el curso.

Perfil docente

Calificación ordinaria

Se pondera cada unidad de aprendizaje por separado, la calificación ordinaria consta del promedio de las ponderaciones. Si el alumno tiene promedio de 8 obtiene su calificación ordinaria, de lo contrario requiere hacer una evaluación final y presentar su portafolio de evidencias completo el día y hora programada para la aplicación de este.

De las asistencias

Derecho a faltar al 20 % del curso

En la realización de esta Unidad Didáctica participaron

Elaborada por Omero Alonso González

En la revisión de este programa participaron

Miguel Montoya Dávila Pilar Orozco González

Coordinador de la Academia de: Omero Alonso González